Estimating residual variance in nonparametric regression using least squares
نویسندگان
چکیده
We propose a new estimator for the error variance in a nonparametric regression model. We estimate the error variance as the intercept in a simple linear regression model with squared differences of paired observations as the dependent variable and squared distances between the paired covariates as the regressor. Our method can be applied to nonparametric regression models with multivariate functions defined on arbitrary subsets of normed spaces, possibly observed on unequally spaced or clustered designed points. No ordering is required for our method. We develop methods for selecting the bandwidth. For the special case of one dimensional domain with equally spaced design points, we show that our method reaches an asymptotic optimal rate which is not achieved by some existing methods. We conduct extensive simulations to evaluate finite sample performance of our method and compare it with existing methods. We illustrate our method using a real data set. Some key words: Bandwidth; Difference-based estimator; Least square; Nonparametric regression; Quadratic forms; Residual variance.
منابع مشابه
Estimating the error distribution function in semiparametric additive regression models
We consider semiparametric additive regression models with a linear parametric part and a nonparametric part, both involving multivariate covariates. For the nonparametric part we assume two models. In the first, the regression function is unspecified and smooth; in the second, the regression function is additive with smooth components. Depending on the model, the regression curve is estimated ...
متن کاملEstimating functionals of the error distribution in parametric and nonparametric regression
We consider estimation of linear functionals of the error distribution for two regression models: parametric and nonparametric, and for two types of errors: independent of the covariate and centered (type I), and conditionally centered given the covariate (type II). We show that the residual-based empirical estimators for the nonparametric type I model remain efficient in the type II model. For...
متن کاملVariance Estimation in Spatial Regression Using a Nonparametric Semivariogram Based on Residuals
The empirical semivariogram of residuals from a regression model with stationary errors may be used to estimate the covariance structure of the underlying process. For prediction (kriging) the bias of the semivariogram estimate induced by using residuals instead of errors has only a minor eeect because the bias is small for small lags. However, for estimating the variance of estimated regressio...
متن کاملDerivative estimation based on difference sequence via locally weighted least squares regression
A new method is proposed for estimating derivatives of a nonparametric regression function. By applying Taylor expansion technique to a derived symmetric difference sequence, we obtain a sequence of approximate linear regression representation in which the derivative is just the intercept term. Using locally weighted least squares, we estimate the derivative in the linear regression model. The ...
متن کاملA Least Squares Method for Variance Estimation in Heteroscedastic Nonparametric Regression
Interest in variance estimation in nonparametric regression has grown greatly in the past several decades. Among the existing methods, the least squares estimator in Tong and Wang (2005) is shown to have nice statistical properties and is also easy to implement. Nevertheless, their method only applies to regression models with homoscedastic errors. In this paper, we propose two least squares es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005